Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Br Poult Sci ; : 1-12, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578279

RESUMO

1. The objective of this study was to test the dose response of dietary supplementation with algae extracts rich in marine-sulphated polysaccharides (MSP1 and MSP2) on the growing performance, body composition at slaughter and caecal microbiota of broiler chickens.2. Male broiler Ross 308 chicks 1-d-old were distributed into eight groups, a control group (unsupplemented), four groups supplemented with increasing doses of algae extract MSP1 (40, 81, 121 and 162 g/ton feed) and three groups supplemented with increasing doses of algae extract MSP2 (40, 81 and 162 g/ton feed). Each group comprised six pens of 56 chickens.3. All chickens were reared under challenging conditions, i.e. high rearing density of 42 kg/m2, fed growing and finishing diets containing, palm oil, rye and high levels of wheat and subjected to short daily fasting periods. The growth performance was recorded during rearing. At 10, 22 and 31 d of age, 12 chickens per group were euthanised to collect the caecal contents and determine microbiota composition and short-chain fatty acid levels. At d 35, the quality of litter and the condition of feathers, footpads and tarsals were scored. At d 36, 7 chickens per pen were slaughtered under commercial conditions to determine carcass composition and breast meat quality (ultimate pH and colour).4. Algal extract MSP1 increased the weight of the caeca and butyrate concentration in the caeca at d 22 (p ≤ 0.05). It increased the ultimate pH of breast fillet measured after slaughter at d 36 (p ≤ 0.05). Moreover, the group receiving 162 g/t MSP1 had a more diverse microbiota at d22. However, algal extract MSP2 had negligible effect on the different measured parameters.

2.
Poult Sci ; 99(2): 857-868, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32029166

RESUMO

Cold stimulations during egg incubation were reported to limit the occurrence of ascites in broilers subjected to cold temperature after 14 d of age. However, data are lacking on the impacts of such strategy in case of cold temperature conditions at start. This study aimed to evaluate the effects of incubation and posthatch cold challenge on performance, breast muscle integrity, and meat processing quality in broiler chickens. Ross 308 eggs were incubated under control temperature (I0, 37.6°C) or subjected to 15°C during 30 min on day 18 and 19 of incubation (I1). Chicks from each group were reared in floor pens either at standard rearing temperature (T0), from 32°C at 0 d to 21°C at 21 d of age, or exposed to colder rearing temperature (T1), from 29°C at 0 to 21°C at 21 d of age. All birds were then kept at 21°C until slaughter (day 40), when body weights (BW), feed conversion ratio (FCR), breast muscle yield, meat processing quality, and the occurrences of meat defects, hock burns, and pododermatitis were recorded. No significant impact of incubation conditions on hatchability was observed. At day 40, BW was more under T1 than under T0 conditions, with T0 females (but not males) presenting more BW after I1 than after I0 conditions. In the whole period, T1 chickens presented lower FCR than T0 chickens and higher breast meat yields at day 40. The occurrence of white striping was more in I1T1 males than in all other groups, except for the I0T1 males. Hock burns were more frequent in I1T1 males than in all females and I0T0 males, whereas the occurrence of pododermatitis was lower in T0 males than in other groups. Despite some positive effects of I1 incubation on growth after starting under low ambient temperature, this study reveals the limits of such strategy concerning chicken health and welfare, demonstrating that early thermal environment is a major component of the quality and sustainability of chicken meat production.


Assuntos
Bem-Estar do Animal , Galinhas/fisiologia , Temperatura Baixa/efeitos adversos , Carne/análise , Comportamento de Nidação , Animais , Galinhas/crescimento & desenvolvimento , Feminino , Masculino , Músculos Peitorais/química
3.
Animal ; 13(5): 1094-1102, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30289100

RESUMO

In order to control and optimize chicken quality products, it is necessary to improve the description of the responses to dietary amino acid (AA) concentration in terms of carcass composition and meat quality, especially during the finishing period. The aim of this study was to investigate the effects of Lysine (Lys, i.e. a limiting AA used as reference in AA nutrition) and AA other than Lys (AA effect). In total, 12 experimental diets were formulated with four levels of digestible Lys content (7, 8.5, 10 and 11.5 g/kg) combined with either a low (AA-), adequate control (AAc) and high (AA+) amount of other essential AA (EAA) expressed as a proportion of Lys. They were distributed to male Ross PM3 from 3 to 5 weeks of age. No significant AA×Lys interaction was found for growth performance or carcass composition. Body weight and feed conversion ratio were significantly improved by addition of Lys but were impaired in broilers receiving the AA- diets, whereas breast meat yield and abdominal fat were only affected by Lys. No additional benefit was found when the relative amount of other EAA was increased. There was a significant AA×Lys interaction on most of the meat quality traits, including ultimate pH, color and drip loss, with a significant effect of both AA and Lys. For example, AA- combined with reduced Lys level favored the production of meat with high ultimate pH (>6.0), dark color and low drip loss whereas more acid, light and exudative meat (<5.85) was produced with AA+ combined with a low Lys level. In conclusion, growth performance, carcass composition and meat quality are affected by the levels of dietary Lys and AA in finishing broilers. In addition, interactive responses to Lys and AA are found on meat quality traits, leading to great variations in breast pHu, color and drip loss according AA balance or imbalance.


Assuntos
Aminoácidos/administração & dosagem , Composição Corporal/efeitos dos fármacos , Galinhas/fisiologia , Carne/normas , Aminoácidos Essenciais/administração & dosagem , Ração Animal/análise , Animais , Peso Corporal , Cor , Dieta/veterinária , Lisina/administração & dosagem , Masculino , Aves Domésticas
4.
Poult Sci ; 98(5): 1960-1967, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535096

RESUMO

Slow-growing chicken lines are valuable genetic resources for the development of well-perceived alternative free-range production. While there is no constraint on increasing growth rate, breeding programs have to evolve in order to include new traits improving the positioning of such lines in the growing market for parts and processed products. In this study, we used dense genotyping to fine map QTL for chicken growth, body composition, and meat quality traits in view of developing new tools for selection of a slow-growing line. The dataset included a total of 836 birds (10 sires, 87 dams, 739 descendants) and 40,203 SNP. QTL for the 15 traits analyzed were detected by 3 different methods, i.e., linkage and linkage disequilibrium haplotype-based analysis (LDLA), family-based single marker association (FASTA), and Bayesian multi-marker regression (Bayes Cπ). After filtering for QTL redundancy, we found 16, 16, and 9 QTL when using the FASTA, LDLA, and Bayes Cπ methods, respectively, with a threshold of 2.49 × 10-5 for FASTA and LDLA, and a Bayes factor of 150 for the Bayes Cπ analysis. They comprised 17 QTL for body weight, 9 QTL for body composition, and 15 QTL for breast meat quality or behavior at slaughter. The 3 methods agreed in the detection of highly significant QTL such as that detected on GGA24 for body weight at 3, 6, and 9 wk, and the 2 QTL detected on GGA17 and GGA18 for breast meat yield. Several significant QTL were also detected for the different components of breast meat quality. This study provided new locations for investigation in order to improve our understanding of the genetic architecture of growth, carcass composition, and meat quality in the chicken and to develop molecular tools for the selection of these traits in a slow-growing line.


Assuntos
Composição Corporal/genética , Peso Corporal/genética , Galinhas/fisiologia , Carne/análise , Locos de Características Quantitativas/fisiologia , Animais , Teorema de Bayes , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Feminino , Marcadores Genéticos , Desequilíbrio de Ligação , Masculino
5.
BMC Genomics ; 19(1): 187, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29514634

RESUMO

BACKGROUND: Because the cost of cereals is unstable and represents a large part of production charges for meat-type chicken, there is an urge to formulate alternative diets from more cost-effective feedstuff. We have recently shown that meat-type chicken source is prone to adapt to dietary starch substitution with fat and fiber. The aim of this study was to better understand the molecular mechanisms of this adaptation to changes in dietary energy sources through the fine characterization of transcriptomic changes occurring in three major metabolic tissues - liver, adipose tissue and muscle - as well as in circulating blood cells. RESULTS: We revealed the fine-tuned regulation of many hepatic genes encoding key enzymes driving glycogenesis and de novo fatty acid synthesis pathways and of some genes participating in oxidation. Among the genes expressed upon consumption of a high-fat, high-fiber diet, we highlighted CPT1A, which encodes a key enzyme in the regulation of fatty acid oxidation. Conversely, the repression of lipogenic genes by the high-fat diet was clearly associated with the down-regulation of SREBF1 transcripts but was not associated with the transcript regulation of MLXIPL and NR1H3, which are both transcription factors. This result suggests a pivotal role for SREBF1 in lipogenesis regulation in response to a decrease in dietary starch and an increase in dietary PUFA. Other prospective regulators of de novo hepatic lipogenesis were suggested, such as PPARD, JUN, TADA2A and KAT2B, the last two genes belonging to the lysine acetyl transferase (KAT) complex family regulating histone and non-histone protein acetylation. Hepatic glycogenic genes were also down-regulated in chickens fed a high-fat, high-fiber diet compared to those in chickens fed a starch-based diet. No significant dietary-associated variations in gene expression profiles was observed in the other studied tissues, suggesting that the liver mainly contributed to the adaptation of birds to changes in energy source and nutrients in their diets, at least at the transcriptional level. Moreover, we showed that PUFA deposition observed in the different tissues may not rely on transcriptional changes. CONCLUSION: We showed the major role of the liver, at the gene expression level, in the adaptive response of chicken to dietary starch substitution with fat and fiber.


Assuntos
Dieta Hiperlipídica/veterinária , Fibras na Dieta/administração & dosagem , Lipogênese , Fígado/metabolismo , Amido/administração & dosagem , Animais , Galinhas , Regulação da Expressão Gênica , Fígado/efeitos dos fármacos , Carne , Transcrição Gênica , Transcriptoma
6.
Poult Sci ; 96(12): 4261-4269, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053847

RESUMO

Thermal manipulation during embryogenesis was previously reported to decrease the occurrence of ascites and to potentially improve cold tolerance of broilers. The objective of our study was to explore the effects of the interaction of cold incubation temperatures and cool ambient temperatures until 21 d of age on performance and body temperature. Ross 308 eggs were incubated either under control conditions I0 (37.6°C) or with cyclic cold stimulations I1 (6 h/d at 36.6°C from d 10 to 18 of incubation) or with 2 cold stimulations I2 (30 min at 15°C) at d 18 and 19 of incubation. These treatments were followed by individual rearing and postnatal exposure to either standard rearing temperature T0 (from 33°C at hatching to 21°C at d 21) or continuously lower temperature T2 (from 28°C at hatching to 21°C at d 21) or exposure to cyclically lower temperature T1 (with circadian temperature oscillations). Treatments I1 and I2 did not significantly alter hatchability compared to control incubation (with 94.8, 95.1, and 92.3%, respectively), or hatching BW and overall chick quality. Hatching body temperature (Tb) was 0.5 and 0.3°C higher in I1 than in I0 and I2 groups, respectively (P = 0.007). A doubled occurrence of health problems was observed with T2 condition, regardless of incubation or sex. At d 3, BW was 2% lower with treatment I1 than with I0 and I2 and was 3% higher in T1 and T2 groups than in T0, but these effects disappeared with age. Group T2 presented a 5% higher feed intake than the control group T0 between 3 and 21 d of age (P = 0.025). Feed conversion ratio (FCR) was affected by experimental conditions (P < 0.001), with low FCR values obtained with I2 incubation in control or cyclically cold postnatal conditions. Maximal FCR values were observed in the continuously cold postnatal conditions, in males submitted to control incubation and in females submitted to I1 incubation, revealing sex-dependent effects of the treatments on performance.


Assuntos
Criação de Animais Domésticos/métodos , Temperatura Corporal , Galinhas/crescimento & desenvolvimento , Temperatura Baixa , Animais , Feminino , Abrigo para Animais , Masculino , Comportamento de Nidação
7.
Exp Cell Res ; 358(2): 140-146, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28625776

RESUMO

The enzyme ß-carotene oxygenase 1 (BCO1) catalyzes the breakdown of provitamin A, including beta-carotene (BC), into retinal, prior to its oxidation into retinoic acid (RA). Allelic variation at the BCO1 locus results in differential expression of its mRNA and affects carotenoid metabolism specifically in chicken Pectoralis major muscle. In this context, the aim of this study was to evaluate the potential myogenic effect of BC and the underlying mechanisms in chicken myoblasts. BCO1 mRNA was detected in myoblasts derived from chicken satellite cells. Treating these myoblasts with BC led to a significant decrease in BrdU incorporation. This anti-proliferative effect was confirmed by a cell cycle study using flow cytometry. BC also significantly increased the differentiation index, suggesting a positive effect on the commitment of avian myoblasts to myogenic differentiation. Addition of DEAB, a specific inhibitor of RALDH activity, significantly reduced BC anti-proliferative and pro-differentiating effects, suggesting that BC exerted its biological effect on chicken myoblasts through activation of the RA pathway. We also observed that in myoblast showing decreased BCO1 expression consecutive to a natural mutation or to a siRNA treatment, the response to BC was inhibited. Nevertheless, BCO1 siRNA transfection increased expression of BCO2 which inhibited cell proliferation in control and BC treated cells.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Mioblastos/metabolismo , Retina/metabolismo , Tretinoína/metabolismo , beta Caroteno/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Animais , Proliferação de Células/fisiologia , Galinhas , Metabolismo dos Lipídeos , Mioblastos/citologia , Oxirredução
8.
Animal ; 11(2): 335-344, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27476550

RESUMO

Responses to changes in dietary Lys and other essential amino acid (AA) concentrations were evaluated in 480 male and female broilers originating from two lines divergently selected for high (pHu+) or low (pHu-) ultimate pH (pHu) of breast muscle. The two genetic lines were fed with two grower isoenergetic diets differing in both true digestible Lys (control=10.2 g/kg and experimental=7.0 g/kg) and amounts of other essential AA calculated in relation to Lys, which were sufficient for the control diet or in excess for the experimental diet. There were six repetitions per treatment. Birds were weighed individually at days 0, 21, 28 and 43. Feed consumption was recorded per pen and feed conversion was calculated over the growing period. The physical activity and walking ability of broilers were recorded during the whole rearing period. Breast and leg yield, and abdominal fat percentage were measured at 43 days of age, as were pHu, color, drip and cooking loss, Warner-Bratzler shear force, and curing-cooking yield of the breast Pectoralis major and pHu of the thigh Sartorius muscle. Divergent selection greatly affected most breast meat quality traits without significantly changing growth rate or feed efficiency. When subjected to a variation in dietary intake of AA, birds from the two genotypes responded in a similar way in terms of animal's growth, feed efficiency, body composition and meat quality traits. Although line and diet did not affect physical or feeding activities of the broilers, a significant effect of line-by-diet interaction was observed on gait score. Contrary to the pHu- birds, the walking ability of pHu+ birds was impaired when fed the control diet that favored growth and breast muscle development and limited storage of carbohydrate in muscle.


Assuntos
Ração Animal/análise , Dieta/veterinária , Carne/análise , Músculos Peitorais/anatomia & histologia , Aminoácidos/metabolismo , Animais , Composição Corporal , Cruzamento , Galinhas/anatomia & histologia , Galinhas/genética , Feminino , Concentração de Íons de Hidrogênio , Masculino , Músculo Esquelético/metabolismo , Músculos Peitorais/fisiologia , Seleção Genética
9.
J Anim Sci ; 93(9): 4524-31, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26440351

RESUMO

The impact of divergent selection based on the ultimate pH (pHu) of pectoralis major (P. major) muscle on the chemical, biochemical, and histological profiles of the muscle and sensorial quality of meat was investigated in broiler chickens. The protein, lipid, DM, glycogen and lactate content, glycolytic potential, proteolysis, lipid and protein oxidation index, muscle fiber cross-sectional area, capillary density, and collagen surface were determined on the breast P. major muscle of 6-wk-old broilers issued from the high-pHu (pHu+) and low-pHu (pHu-) lines. Sensory attributes were also evaluated on the breast (roasted or grilled) and thigh (roasted) meat of the 2 lines. Protein, lipid, and DM content of P. major muscle were not affected by selection ( > 0.05). However, the P. major muscle of the pHu+ line was characterized by lower residual glycogen (-16%; ≤ 0.001) and lactate (-14%; ≤ 0.001) content and lower glycolytic potential (-14%; ≤ 0.001) compared with the pHu- line. Although the average cross-sectional area of muscle fibers and surface occupied by collagen were similar ( > 0.05) in both lines, fewer capillaries per fiber (-15%; ≤ 0.05) were observed in the pHu+ line. The pHu+ line was also characterized by lower lipid oxidation (thiobarbituric acid reactive substance index: -23%; ≤ 0.05) but protein oxidation and proteolysis index were not different ( > 0.05) between the 2 lines. At the sensory level, selection on breast muscle pHu mainly affected the texture of grilled and roast breast meat, which was judged significantly more tender ( ≤ 0.001) in the pHu+ line, and the acid taste, which was less pronounced in the roasted breast meat of the pHu+ line ( ≤ 0.002). This study highlighted that selection based on pHu does not affect the chemical composition and structure of breast meat. However, by modifying muscle blood supply and glycogen turnover, it affects meat acidity and oxidant status, both of which are likely to contribute to the large differences in texture observed between the 2 lines.


Assuntos
Carne/análise , Seleção Genética , Animais , Galinhas/genética , Galinhas/metabolismo , Glicogênio/análise , Glicólise , Concentração de Íons de Hidrogênio , Ácido Láctico , Músculo Esquelético/metabolismo
10.
Meat Sci ; 109: 18-26, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26002117

RESUMO

The knowledge of the molecular organization of living organisms evolved considerably during the last years. The methodologies associated also progressed with the development of the high-throughput sequencing (SNP array, RNAseq, etc.) and of genomic tools allowing the simultaneous analysis of hundreds or thousands of genes, proteins or metabolites. In farm animals, some proteins, mRNAs or metabolites whose abundance has been associated with meat quality traits have been detected in pig, cattle, chicken. They constitute biomarkers for the assessment and prediction of qualities of interest in each species, with potential biomarkers across species. The ongoing development of rapid methods will allow their use for decision-making and management tools in slaughterhouses, to better allocate carcasses or cuts to the appropriate markets. Besides, their application on living animals will help to improve genetic selection and to adapt a breeding system to fulfill expected quality level. The ultimate goal is to propose effective molecular tools for the management of product quality in meat production chains.


Assuntos
Genoma , Genômica/métodos , Genótipo , Carne/análise , Metaboloma , Metabolômica/métodos , Fenótipo , Matadouros , Animais , Cruzamento , Bovinos , Galinhas , Tomada de Decisões , Tecnologia de Alimentos/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Marketing , Carne/normas , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Seleção Genética , Suínos
11.
Animal ; 9(10): 1643-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25959107

RESUMO

The increasing use of unconventional feedstuffs in chicken's diets results in the substitution of starch by lipids as the main dietary energy source. To evaluate the responses of genetically fat or lean chickens to these diets, males of two experimental lines divergently selected for abdominal fat content were fed isocaloric, isonitrogenous diets with either high lipid (80 g/kg), high fiber (64 g/kg) contents (HL), or low lipid (20 g/kg), low fiber (21 g/kg) contents (LL) from 22 to 63 days of age. The diet had no effect on growth performance and did not affect body composition evaluated at 63 days of age. Glycolytic and oxidative energy metabolisms in the liver and glycogen storage in liver and Sartorius muscle at 63 days of age were greater in chicken fed LL diet compared with chicken fed HL diet. In Pectoralis major (PM) muscle, energy metabolisms and glycogen content were not different between diets. There were no dietary-associated differences in lipid contents of the liver, muscles and abdominal fat. However, the percentages of saturated (SFA) and monounsaturated fatty acids (MUFA) in tissue lipids were generally higher, whereas percentages of polyunsaturated fatty acids (PUFA) were lower for diet LL than for diet HL. The fat line had a greater feed intake and average daily gain, but gain to feed ratio was lower in that line compared with the lean line. Fat chickens were heavier than lean chickens at 63 days of age. Their carcass fatness was higher and their muscle yield was lower than those of lean chickens. The oxidative enzyme activities in the liver were lower in the fat line than in the lean line, but line did not affect energy metabolism in muscles. The hepatic glycogen content was not different between lines, whereas glycogen content and glycolytic potential were higher in the PM muscle of fat chickens compared with lean chickens. Lipid contents in the liver, muscles and abdominal fat did not differ between lines, but fat chickens stored less MUFA and more PUFA in abdominal fat and muscles than lean chickens. Except for the fatty acid composition of liver and abdominal fat, no interaction between line and diet was observed. In conclusion, the amount of lipids stored in muscles and fatty tissues by lean or fat chickens did not depend on the dietary energy source.


Assuntos
Galinhas/fisiologia , Dieta/veterinária , Metabolismo Energético , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Gordura Abdominal/metabolismo , Tecido Adiposo/metabolismo , Animais , Composição Corporal , Fibras na Dieta/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Insaturados/metabolismo , Glicogênio/metabolismo , Lipídeos , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo
12.
J Anim Sci ; 93(1): 107-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25568361

RESUMO

Excessive deposition of body fat is detrimental to production efficiency. The aim of this study was to provide plasma indicators of chickens' ability to store fat. From 3 to 9 wk of age, chickens from 2 experimental lines exhibiting a 2.5-fold difference in abdominal fat content and fed experimental diets with contrasted feed energy sources were compared. The diets contained 80 vs. 20 g of lipids and 379 vs. 514 g of starch per kg of feed, respectively, but had the same ME and total protein contents. Cellulose was used to dilute energy in the high-fat diet. At 9 wk of age, the body composition was analyzed and blood samples were collected. A metabolome-wide approach based on proton nuclear magnetic resonance spectroscopy was associated with conventional measurements of plasma parameters. A metabolomics approach showed that betaine, glutamine, and histidine were the most discriminating metabolites between groups. Betaine, uric acid, triglycerides, and phospholipids were positively correlated (r > 0.3; P < 0.05) and glutamine, histidine, triiodothyronine, homocysteine, and ß-hydroxybutyrate were negatively correlated (r < -0.3; P < 0.05) with relative weight of abdominal fat and/or fat situated at the top of external face of the thigh. The combination of plasma free fatty acids, total cholesterol, phospholipid, ß-hydroxybutyrate, glutamine, and methionine levels accounted for 74% of the variability of the relative weight of abdominal fat. On the other hand, the combination of plasma triglyceride and homocysteine levels accounted for 37% of the variability of fat situated at the top of external face of the thigh. The variations in plasma levels of betaine, homocysteine, uric acid, glutamine, and histidine suggest the implication of methyl donors in the control of hepatic lipid synthesis and illustrate the interplay between AA, glucose, and lipid metabolisms in growing chickens.


Assuntos
Biomarcadores/sangue , Composição Corporal/fisiologia , Galinhas/metabolismo , Dieta Hiperlipídica/veterinária , Metabolismo dos Lipídeos/fisiologia , Lipídeos/biossíntese , Ácido 3-Hidroxibutírico/metabolismo , Gordura Abdominal/metabolismo , Tecido Adiposo/metabolismo , Animais , Betaína/sangue , Peso Corporal , Colesterol/sangue , Ácidos Graxos não Esterificados/sangue , Fígado/metabolismo , Triglicerídeos/sangue
13.
Animal ; 9(1): 76-85, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25118598

RESUMO

Selection programs have enabled broiler chickens to gain muscle mass without similar enlargement of the cardiovascular and respiratory systems that are essential for thermoregulatory efficiency. Meat-type chickens cope with high ambient temperature by reducing feed intake and growth during chronic and moderate heat exposure. In case of acute heat exposure, a dramatic increase in morbidity and mortality can occur. In order to alleviate heat stress in the long term, research has recently focused on early thermal manipulation. Aimed at stimulation of long-term thermotolerance, the thermal manipulation of embryos is a method based on fine tuning of incubation conditions, taking into account the level and duration of increases in temperature and relative humidity during a critical period of embryogenesis. The consequences of thermal manipulation on the performance and meat quality of broiler chickens have been explored to ensure the potential application of this strategy. The physiological basis of the method is the induction of epigenetic and metabolic mechanisms that control body temperature in the long term. Early thermal manipulation can enhance poultry resistance to environmental changes without much effect on growth performance. This review presents the main strategies of early heat exposure and the physiological concepts on which these methods were based. The cellular mechanisms potentially underlying the adaptive response are discussed as well as the potential interest of thermal manipulation of embryos for poultry production.


Assuntos
Adaptação Fisiológica , Regulação da Temperatura Corporal/fisiologia , Embrião de Galinha/fisiologia , Galinhas/fisiologia , Animais , Meio Ambiente , Feminino , Temperatura Alta , Incubadoras , Masculino
14.
J Anim Sci ; 92(9): 3816-24, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25006074

RESUMO

Genetic parameters for ultimate pH of pectoralis major muscle (PM-pHu) and sartorius muscle (SART-pHu); color parameters L*, a*, b*; logarithm of drip loss (LogDL) of pectoralis major (PM) muscle; breast meat yield (BMY); thigh and drumstick yield (TY); abdominal fat percentage (AFP); and BW at 6 wk (BW6) were estimated in 2 lines of broiler chickens divergently selected for PM-pHu. Effects of selection on all the previous traits and on glycolytic potential, pectoralis major muscle pH at 15 min postmortem, curing-cooking yield (CCY), cooking loss (CL), and Warner-Bratzler shear force (WBSF) of the PM muscle were also analyzed after 5 generations. Strong genetic determinism of PM-pHu was observed, with estimated h(2) of 0.57 ± 0.02. There was a significant positive genetic correlation (rg) between PM-pHu and SART-pHu (0.54 ± 0.04), indicating that selection had a general rather than a specific effect on energy storage in skeletal muscles. The h(2) estimates of L*, a*, and b* parameters were 0.58 ± 0.02, 0.39 ± 0.02, and 0.48 ± 0.02, respectively. Heritability estimates for TY, BMY, and AFP were 0.39 ± 0.04, 0.52 ± 0.01, and 0.71 ± 0.02, respectively. Our results indicated different genetic control of LogDL and L* of the meat between the 2 lines; these traits had a strong rg with PM-pHu in the line selected for low ultimate pH (pHu) value (pHu-; -0.80 and -0.71, respectively), which was not observed in the line selected for high pHu value (pHu+; -0.04 and -0.29, respectively). A significant positive rg (0.21 ± 0.04) was observed between PM-pHu and BMY but not between PM-pHu and BW6, AFP, or TY. Significant phenotypic differences were observed after 5 generations of selection between the 2 lines. The mean differences (P < 0.001) in pHu between the 2 lines were 0.42 and 0.21 pH units in the breast and thigh muscle, respectively. Breast meat in the pHu+ line exhibited lower L* (-5 units; P < 0.001), a* (-0.22 units; P < 0.001), b* (-1.53 units; P < 0.001), and drip loss (-1.6 units; P < 0.001) than in the pHu- line. Breast meat of the pHu+ line was also characterized by greater CCY (+6.1 units; P < 0.001), lower CL (-1.66 units; P < 0.01), and lower WBSF after cooking (-5.1 units; P < 0.001) compared to the pHu- line. This study highlighted that selection based on pHu can be effective in improving the processing ability of breast meat and reducing the incidence of meat quality defects without affecting chicken growth performance.


Assuntos
Composição Corporal/genética , Carne/normas , Músculo Esquelético/fisiologia , Animais , Galinhas/genética , Galinhas/fisiologia , Glicólise/genética , Concentração de Íons de Hidrogênio , Fenótipo , Seleção Genética
15.
J Anim Sci ; 91(8): 3674-85, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23736053

RESUMO

Selection in broiler chickens has increased muscle mass without similar development of the cardiovascular and respiratory systems, resulting in limited ability to sustain high ambient temperatures. The aim of this study was to determine the long-lasting effects of heat manipulation of the embryo on the physiology, body temperature (Tb), growth rate and meat processing quality of broiler chickens reared in floor pens. Broiler chicken eggs were incubated in control conditions (37.8°C, 56% relative humidity; RH) or exposed to thermal manipulation (TM; 12 h/d, 39.5°C, 65% RH) from d 7 to 16 of embryogenesis. This study was planned in a pedigree design to identify possible heritable characters for further selection of broiler chickens to improve thermotolerance. Thermal manipulation did not affect hatchability but resulted in lower Tb at hatching and until d 28 post-hatch, with associated changes in plasma thyroid hormone concentrations. At d 34, chickens were exposed to a moderate heat challenge (5 h, 32°C). Greater O2 saturation and reduced CO2 partial pressure were observed (P < 0.05) in the venous blood of TM than in that of control chickens, suggesting long-term respiratory adaptation. At slaughter age, TM chickens were 1.4% lighter and exhibited 8% less relative abdominal fat pad than controls. Breast muscle yield was enhanced by TM, especially in females, but without significant change in breast meat characteristics (pH, color, drip loss). Plasma glucose/insulin balance was affected (P < 0.05) by thermal treatments. The heat challenge increased the heterophil/lymphocyte ratio in controls (P < 0.05) but not in TM birds, possibly reflecting a lower stress status in TM chickens. Interestingly, broiler chickens had moderate heritability estimates for the plasma triiodothyronine/thyroxine concentration ratio at d 28 and comb temperature during the heat challenge on d 34 (h(2) > 0.17). In conclusion, TM of the embryo modified the physiology of broilers in the long term as a possible adaptation for heat tolerance, without affecting breast meat quality. This study highlights the value of 2 new heritable characters involved in thermoregulation for further broiler selection.


Assuntos
Criação de Animais Domésticos/métodos , Composição Corporal/fisiologia , Embrião de Galinha/fisiologia , Temperatura Alta , Carne/normas , Animais , Feminino , Masculino , Músculo Esquelético/crescimento & desenvolvimento
16.
Br Poult Sci ; 54(2): 190-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23647182

RESUMO

1. The enrichment of raw poultry meat with n-3 fatty acids (n-3 FA) has been investigated in detail, particularly in high growth rate genotype standard broiler chickens, whereas low growth rate genotype Label Rouge chickens have received less attention. With the increased development of processed poultry products, it is necessary to ensure that the nutritional and sensory quality of meat enriched with n-3 FA is not affected by processing. 2. Two experiments were undertaken for this purpose. In the first experiment, 696 male Ross 708 chickens were reared under standard conditions, and in the second, 750 male JA 657 chickens were reared under Label Rouge conditions. All birds received the same starting and growing diets containing palm and soya oils in each experiment. Birds were distributed into three groups from 21 or 57 d of age for standard and Label Rouge chickens, respectively, and given a control, linseed oil or extruded linseed diet. Diets were also supplemented with vitamin E (100-200 mg/kg). Birds were slaughtered at 56 or 84 d of age for standard and Label Rouge chickens, respectively. A total amount of 60 kg of breast meat from each group was processed into white cured-cooked meat. 3. The dietary treatment had no effect on the growth performance of chickens or meat yield. The use of extruded linseed or linseed oil only decreased the carcass fatness of the standard chickens but had no effect on the carcass fatness of Label Rouge chickens. The nutritional quality of raw and cured-cooked meat was improved (increased concentration of n-3 FA), whereas the technological quality of the meat (pH, juice loss after cold storage, susceptibility to oxidation, colour, processing yield and shear force value) and sensory quality of the processed products were not or slightly affected. 4. Linked to lower breast yield, to lower lipid content in breast meat and to higher slaughter age, Label Rouge chickens seemed to be less efficient for n-3 FA deposition in breast muscles than standard chickens.


Assuntos
Galinhas/fisiologia , Ácidos Graxos Ômega-3/administração & dosagem , Linho/química , Óleo de Semente do Linho/administração & dosagem , Carne/análise , Ração Animal/análise , Criação de Animais Domésticos , Animais , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Dieta/veterinária , Suplementos Nutricionais/análise , França , Masculino , Músculos Peitorais/fisiologia , Vitamina E/administração & dosagem
17.
J Anim Sci ; 90(12): 4280-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23125440

RESUMO

A polymorphism in the promoter of the ß,ß-carotene 15,15'-monooxygenase 1 (BCMO1) gene recently was identified in an experimental cross between 2 chicken lines divergently selected on growth rate and found to be associated with variations in the yellow color of the breast meat. In this study, the effects of the polymorphism on several aspects of carotenoid metabolism were evaluated in chickens sharing the same genetic background except for their genotype at the BCMO1 locus. We confirmed that BCMO1 mRNA abundance varied (P < 0.001) between the 2 homozygous genotypes (GG << AA) and in the pectoralis major muscle. By contrast, BCMO1 mRNA expression was not affected (P > 0.05) by the polymorphism in the duodenum, liver, or sartorius muscle. The breast meat of GG chickens was more (P < 0.001) yellow and richer in lutein (P < 0.01) and zeaxanthin (P < 0.05) compared to that of AA chickens whereas these variables did not differ (P > 0.05) in the other tissues tested. The GG were also characterized by reduced (P < 0.01) plasma lutein and zeaxanthin concentrations than AA without affecting plasma and tissue content of fat-soluble vitamins A and E. As lutein and zeaxanthin are usually not considered as substrates of the BCMO1 enzyme, the impact of BCMO1 polymorphism on the activity of other genes involved in carotenoid transport (SCARB1 and CD36 encoding the scavenger receptor class B type I and the cluster determinant 36, respectively) and metabolism (BCDO2 encoding ß,ß-carotene 9',10'-dioxygenase 2) was evaluated. The BCMO1 polymorphism did not affect mRNA abundance of BCDO2, SCARB1, or CD36, regardless of tissue considered. Taken together, these results indicated that a genetic variant of BCMO1 specifically changes lutein and zeaxanthin content in the chicken plasma and breast muscle without impairing vitamin A and E metabolism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Galinhas/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Transferases Intramoleculares/metabolismo , Músculo Esquelético/enzimologia , Xantofilas/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Animais , Proteínas de Arabidopsis/genética , Composição Corporal/genética , Galinhas/genética , Genótipo , Transferases Intramoleculares/genética , Músculo Esquelético/metabolismo , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vitamina A/metabolismo , Vitamina E/metabolismo , Vitaminas/metabolismo , Aumento de Peso , beta-Caroteno 15,15'-Mono-Oxigenase/genética
18.
J Anim Sci ; 90(2): 447-55, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21984711

RESUMO

The aim of the study was to evaluate the impact of 2 isoenergetic growing diets with different CP (17 vs. 23%) on the performance and breast meat quality of 2 lines of chicken divergently selected for abdominal fatness [i.e., fat and lean (LL) lines]. Growth performance, breast and abdominal fat yields, breast meat quality parameters (pH, color, drip loss), and muscle glycogen storage at death were measured. Increased dietary CP resulted in increased BW, increased breast meat yield, and reduced abdominal fatness at slaughter regardless of genotype (P < 0.001). By contrast, dietary CP affected glycogen storage and the related meat quality parameters only in the LL chickens. Giving LL chickens the low-CP diet led to reduced concentration of muscle glycogen (P < 0.01), and as a result, breast meat with a higher (P < 0.001) ultimate pH, decreased (P < 0.001) lightness, and reduced (P < 0.001) drip loss during storage. The decreased muscle glycogen content observed in LL receiving the low-CP diet compared with the high-CP diet occurred concomitantly with greater phosphorylation amount for the α-catalytic subunit of adenosine monophosphate-activated protein kinase and glycogen synthase. This was consistent with the reduced muscle glycogen content observed in LL fed the low-CP diet because adenosine monophosphate-activated protein kinase inhibits glycogen synthesis through its action on glycogen synthase. Our results demonstrated that nutrition is an effective means of modulating breast meat properties in the chicken. The results also highlighted the need to take into account interaction with the genetic background of the animal to select nutritional strategies to improve meat quality traits in poultry.


Assuntos
Galinhas/metabolismo , Proteínas Alimentares/administração & dosagem , Glicogênio/metabolismo , Carne/análise , Músculo Esquelético/metabolismo , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Tecido Adiposo/fisiologia , Animais , Western Blotting , Peso Corporal/genética , Peso Corporal/fisiologia , Galinhas/genética , Feminino , Genótipo , Glicogênio/análise , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Masculino , Músculo Esquelético/enzimologia , Seleção Genética , Estatísticas não Paramétricas
19.
J Anim Sci ; 90(6): 2003-13, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22205669

RESUMO

Because of the increasing demand for raw cuts and processed products, there is a trend to producing very heavy broilers. Breeds that are used for such kinds of production have been intensively selected for growth rate and breast meat yield, and birds are reared for a longer period than standard broilers. This study was to evaluate the effects of increasing slaughter age on technical and economic factors, including production efficiency and environmental costs, bird welfare, and breast meat quality in a modern heavy broiler line. Five groups of 300 male Ross 708 chickens were reared until slaughter ages of 35, 42, 49, 56, or 63 d. Increasing age at slaughter from 35 to 63 d resulted in a 7.4-fold increase (P < 0.01) in mortality rate (5.21 vs. 0.70%). It also increased (P < 0.001) the slaughter weight and ADFI of birds 2.5- and 1.4-fold, respectively, without affecting their G:F. Under our experimental conditions, economic profit evaluated through the net gain reached a maximum at 42 d. The moisture and ammonium content of litter increased (P < 0.05 and P < 0.01, respectively) rapidly during rearing concomitantly with increased (P < 0.05) occurrence and severity of contact dermatitis and decreased (P < 0.05) walking ability and activity of birds. Thermal comfort also decreased (P < 0.05) greatly as early as 42 d of age. Changes in carcass quality occurred mainly between 35 and 56 d of age, with a progressive increase (P < 0.001) in breast and leg yield, whereas body fatness was barely affected by age. Major changes in breast meat traits were observed between 35 and 49 d of age, with an increase in muscle pH at 15 min (P < 0.01) and 24 h (P < 0.001) postmortem and reduced (P < 0.001) lightness and drip loss. The protein and lipid content of raw breast meat also increased (P < 0.05 and P < 0.01, respectively) with age. Taking into account the main aspects of sustainability, we could recommend slaughtering chickens of heavy line at 42 d of age.


Assuntos
Envelhecimento , Criação de Animais Domésticos/economia , Criação de Animais Domésticos/métodos , Bem-Estar do Animal/normas , Carne/normas , Animais , Composição Corporal , Galinhas , Masculino
20.
Animal ; 5(5): 703-17, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22439993

RESUMO

Skeletal muscle development in vertebrates - also termed myogenesis - is a highly integrated process. Evidence to date indicates that the processes are very similar across mammals, poultry and fish, although the timings of the various steps differ considerably. Myogenesis is regulated by the myogenic regulatory factors and consists of two to three distinct phases when different fibre populations appear. The critical times when myogenesis is prone to hormonal or environmental influences depend largely on the developmental stage. One of the main mechanisms for both genetic and environmental effects on muscle fibre development is via the direct action of the growth hormone-insulin-like growth factor (GH-IGF) axis. In mammals and poultry, postnatal growth and function of muscles relate mainly to the hypertrophy of the fibres formed during myogenesis and to their fibre-type composition in terms of metabolic and contractile properties, whereas in fish hyperplasia still plays a major role. Candidate genes that are important in skeletal muscle development, for instance, encode for IGFs and IGF-binding proteins, myosin heavy chain isoforms, troponin T, myosin light chain and others have been identified. In mammals, nutritional supply in utero affects myogenesis and the GH-IGF axis may have an indirect action through the partitioning of nutrients towards the gravid uterus. Impaired myogenesis resulting in low skeletal myofibre numbers is considered one of the main reasons for negative long-term consequences of intrauterine growth retardation. Severe undernutrition in utero due to natural variation in litter or twin-bearing species or insufficient maternal nutrient supply may impair myogenesis and adversely affect carcass quality later in terms of reduced lean and increased fat deposition in the progeny. On the other hand, increases in maternal feed intake above standard requirement seem to have no beneficial effects on the growth of the progeny with myogenesis not or only slightly affected. Initial studies on low and high maternal protein feeding are published. Although there are only a few studies, first results also reveal an influence of nutrition on skeletal muscle development in fish and poultry. Finally, environmental temperature has been identified as a critical factor for growth and development of skeletal muscle in both fish and poultry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA